

Thermodynamique | Chapitre 2 | Plan de cours

θ2 · Transferts d'énergie

I - Énergie interne

- I.1 Origine microscopique
- 1.2 Capacité thermique à volume constant
- 1.3 Cas du gaz parfait
- I.4 Cas du liquide idéal

II - Travail des forces de pression

- II.1 Expression
- II.2 Interprétation géométrique du travail

III - Transferts thermiques

- III.1 Chaleur
- III.2 Modes de transfert
- III.3 Thermostat

IV - Transformations entre deux états d'équilibres

- IV.1 Nature des transformations
- **IV.2 Applications**
 - a) Transformation isochore
 - b) Transformation monobare et monotherme
 - c) Transformation isotherme

	Définir l'énergie interne.	l.1
	Définir la capacité thermique à volume constant.	1.2
	Exprimer la forme générale de U_m et $\mathcal{C}_{V,m}$ pour un GP :	1.3
	$U_m(T) = \frac{\mathrm{RT}}{\gamma - 1} \Rightarrow C_{V,m} = \frac{R}{\gamma - 1} \Rightarrow \Delta U = C_V \Delta T$	
	Exprimer U_m et $\mathcal{C}_{V,m}$ pour un gaz parfait monoatomique et diatomique :	1.3
	$U_m(T) = \frac{3}{2}RT \implies C_{V,m} = \frac{3}{2}R \text{et} U_m(T) = \frac{5}{2}RT \implies C_{V,m} = \frac{5}{2}R$	
	Exprimer la forme générale de U_m et $\mathcal{C}_{V,m}$ pour une PCII :	1.4
	$U_m(T) \propto T \Rightarrow C_{V,m} = cte \Rightarrow \Delta U = C_V \ \Delta T$	
	Exprimer le travail élémentaire et le travail total des forces de pression.	II.1
	· \overline{v}_f	
	$\delta W = -P_{ext} dV \Rightarrow W = -\int\limits_{V_{ext}} P_{ext} dV$	
П	Savoir interpréter géométriquement le travail dans un diagramme de Clapeyron (dans les cas d'une	11.2
	transformation élémentaire, d'une transformation $A \rightarrow B$ et d'une transformation cyclique $A \rightarrow A$).	2
	Définir la chaleur.	III.1
	Définir les trois types de transferts thermiques : conduction, convection et rayonnement.	III.2
	Définir un thermostat.	III.3
	Définir une transformation : isochore, monotherme, isotherme, monobare, isobare, adiabatique.	IV.1
	Savoir établir rapidement les résultats suivants, pour un gaz parfait :	
	 Transformation isochore : 	IV.2.a
	W = 0	
	 Transformation monobare (et donc isobare) : 	IV.2.b
	$W = -P_{\rm ext}(V_f - V_i)$	
	 Transformation monotherme (et donc isotherme) : 	IV.2.b
	$\Delta U = 0$	
	Transformation isotherme :	IV.2.c

 $W = -nRT_0 \ln \left(\frac{V_f}{V_i}\right)$

IV.2.c

Capacités exigibles du chapitre